Содержание
А почему на двигателе сразу нет датчиков?
В некоторых приложениях (например, для коптеров) все эти заморочки не нужны. Контроллеры пытаются угадать происходящее с ротором по току в катушках. С одной стороны, это меньше заморочек, но с другой стороны, иногда приводит к проблемам с моментом старта двигателя, поэтому слабоприменимо, например, в робототехнике, где нужны околонулевые скорости. Давайте попробуем запитать наш движок от обычного китайского коптерного ESC (electronic speed controller).
Мой контроллер хочет на вход PPM сигнал: это импульс с частотой 50Гц, длина импульса задаёт обороты: 1мс — останов, 2мс — максимально возможные обороты (считается как KV двигателя * напряжение).
Вот здесь я выложил исходный код и кубовские файлы для синей таблетки. Таймер 1 генерирует PWM для ESC, таймеры 2,3,4 считают соответствующие квадратурные сигналы. Поскольку в прошлой статье я крайне подробно расписал, где и что кликать, то здесь только даю ссылку на исходный код.
На вход моему ESC я даю пилообразное задание скорости, посмотрим, как он его отработает. Вывод синей таблетки лежит тут, а код, который рисует график, тут.
Поскольку у меня двигатель имеет номинал 400KV, а питание я подал 10В, то максимальные обороты должны быть в районе 4000 об/мин = 419 рад/с. Ну а вот и график подоспел:
Видно, что реальные обороты соответствуют заданию весьма приблизительно, что терпимо для коптеров, но совершенно неприменимо во многих других ситуациях, почему, собственно, я и хочу использовать более совершенные контроллеры, которым нужны сигналы с датчиков холла. Ну и бонусом я получаю угол поворота ротора, что бывает крайне полезно.
Что такое датчик холла
Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения.
Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами — это радиоэлемент, который реагирует на внешнее магнитное поле.
Интересно, что датчик Холла есть во многих современных смартфонах (пусть и упрощенный его вариант). Он может определять наличие магнитного поля и работает вместе с магнитным сенсором, который отвечает за работу компаса. Также датчик Холла используется в телефонах, для которых которых доступны специальные чехлы с магнитной защелкой — Smart Case.
Описание и применение
Контроллер, в основе которого лежит действие эффекта Холла, относится к датчикам магнитного типа. Они выдают электрический сигнал в зависимости от изменения магнитного поля вокруг них.
Эффект Холла состоит в появлении напряжения в проводнике при прохождении через него электрического тока. Электрический ток меняет магнитное поле, за ним меняется индукция этого поля, в итоге создается разность потенциалов.
Регистр Холла работает следующим образом:
- вокруг него создается магнитное поле, активирующее контроллер;
- при внесении в поле какого-либо объекта, оно выходит за первоначальные границы; датчик этот процесс фиксирует и генерирует напряжение, пропорциональное изменению.
Напряжение называется напряжением Холла.
На основе датчика Холла собирают контроллеры приближения, движения, переключатели и другие полезные в быту и промышленности устройства.
Все функции контроллера
Кроме того на плате есть точки дополнительных функций, которые не выведены в общем пучке проводов. Функция срабатывает при подключении точки к общему проводу (GND). (Любой черный провод на плате это общий или GND).
Точки подписаны следующим образом:
BH | тормоз высокий (срабатывает при подключении на 5 В) |
BL | тормоз низкий (срабатывает при подключении на GND) |
DD | реверс (задний ход, если позволяет мотор) |
HI | понижение скорости |
LO | повышение скорости |
XH | круиз контроль (поддержка заданной скорости) |
TS | сигнал ручки газа |
XX | обучение (для входа в режим нужно соединить две точки) |
EBS | торможение двигателем (активируется по сигналу с датчика тормоза) |
а3 | противоугонка, режим паркинг (при подключенной батарее контроллер тормозит двигатель и не даёт укатить аппарат) |
Возможно кому-то эти функции пригодятся для своих проектов.
Датчики холла
Теперь давайте поставим три датчика холла в те чёрные точки, обозначенные на схеме. Давайте договоримся, что датчик выдаёт логическую единицу, когда он находится напротив красного магнита. Всего существует шесть (сюрприз!) возможных состояний трёх датчиков: 2
3
— 2. Всего возможных состояний 8, но в силу расстояния между датчиками они не могут все втроём быть в логическом нуле или в логической единице:
Обратите внимание, что они генерируют три сигнала, сдвинутые друг относительно друга на 1/3 периода. Кстати, электрики используют слово градусы, говоря про 120°, чем окончательно запутывают нубов типа меня. Если мы хотим сделать свой контроллер двигателя, то достаточно читать сигнал с датчиков, и соответственно переключать напряжение на обмотках.
Для размещения датчиков я использовал вот такую платку, дизайн которой взял тут. По ссылке лежит проект eagle, так что я просто заказал у китайцев сразу много подобных платок:
Эти платки несут на себе только три датчика холла, больше ничего. Ну, по вкусу можно поставить конденсаторы, я не стал заморачиваться. Очень удобно сделаны длинные прорези для регулировки положения датчиков относительно статора.
Ещё бы! Единственная разница, что инкрементальные энкодеры дают два сигнала, сдвинутые друг относительно друга на 90°, а у нас три сигнала, сдвинутые на 120°. Что будет, если завести любые два из них на обычный квадратурный декодер, например,
? Мы получим возможность определять положение вала с точностью до четырёх отсчётов на одну седьмую оборота, или 28 отсчётов на оборот. Если вы не поняли, о чём я, прочтите принцип работы квадратурного декодера в
Я долго думал, как же мне использовать все три сигнала, ведь у нас происходит шесть событий на одну седьмую оборота, мы должны иметь возможность получить 42 отсчёта на оборот. В итоге решил пойти грубой силой, так как синяя таблетка имеет кучу аппаратных квадратурных декодеров, поэтому я решил в ней завести три счётчика:
Видно, что при каждом событии у нас увеличиваются два из них, поэтому сложив три счётчика, и поделив на два, мы получим равномерно тикающий определитель положения вала, с точностью до 6*7 = 42 отсчёта на оборот!
Вот так выглядит макет подключения датчиков Холла к синей таблетке:
Замена дх мотор-колеса
1. Для вскрытия моторизированного колеса, берём в руки стамеску и молоток. Приспосабливаем первую под крышку и слегка постукиваем по ней молотком. Тут крайне важно следить за тем, чтобы инструмент не проскользнул внутрь движка, так как в этом случае стамеской могут быть нанесены серьёзные повреждения обмотке силового агрегата. Если такое произойдёт, то придётся не слабо раскошелиться на перемотку.
При тугом снятии крышки МК либо застревании её на оси, нужно постучать молотком по торцу оси двигателя с той стороны, где застопорилась крышка.
2. Далее выдавливаем ротор из статора. Для воплощения этого в реальность, нужно держа статор, упереть мотор осью о твёрдую поверхность и нажать не жалея сил. Выдавив, удерживая одной рукой статор, второй, забираем ротор. Здесь нужно соблюдать осторожность, так как неодимовые магниты настолько мощны, что могут вернуть статор на его исходное место, придавив попутно вам пальцы.
3. После выдавливания сердцевины, вашему взору предстанут ДХ в статоре. Прогреваем паяльником железо возле неисправного датчика — это делается для обеспечения более лёгкого извлечения детали. Греем минут 5. Затем подковыриваем датчик с помощью канцелярского ножа или тоненькой отвёрточки и выдвигаем его наружу.
4. Как разберётесь с датчиками Холла, прозвоните МК посредством тестера. Если измерительного прибора под рукой нет, подключите моторизированное колесо и проверьте его работоспособность. Если всё в порядке, осуществляем герметизацию крышки силиконом и закручиваем болты полностью.
Замена ручки газа
В ряде случаев рукоятку акселератора проще и надежнее заменить, чем отремонтировать. Например, при наличии серьезных повреждений или после попадания воды. Или если ремонтные работы не увенчались успехом. Для замены нужно:
- снять с руля старые грипсы;
- зафиксировать ручку шурупом, используя 6-гранник на 2,5 мм;
- при установке модели рычажной конструкции – убедиться, что при таком ее положении вам будет комфортно пользоваться кнопкой включения электроники и поворачивать рычаг большим пальцем, удерживая остальную часть руки на грипсе.
От исправности и удобства использования ручки газа во многом зависит удовольствие от поездок, поэтому к выбору и использованию этого органа управления нужно подходить ответственно.
Надеемся, вы не пропустили нашу предыдущую статью об электровелосипедах, их преимуществах, особенностях технического оснащения и использования.
Источник
Запуск мотор колеса без датчиков холла
Почти все современные контроллеры, а тем более покупные, умеют заставить работать мотор колесо без датчиков холла, которые, как многие утверждают, весьма ненадежные. Хотя лично у меня ни разу в жизни подобного инцидента не было. Дело все в том, что датчики холла ставятся на почти всех шаговых моторах, и лишь за редким исключением они могут отсутствовать.
Так перелопатив кучу аппаратуры, я лично проблемы такой не встречал, чтобы они резко или без причинно выгорали, или замыкали. В связи с тем, что данная затея, а именно работа мотор колеса без ДХ, пришлась по вкусу многим потребителям электротранспорта, ну и появилась востребованность.
И вот, на сегодняшний момент, к сожалению, данной функцией обладают наверно около 90% современных контроллеров, а без этой функции найти контроллер уже, к сожалению, проблема.
Почему, к сожалению, все дело в том, что функция работы без датчиков холла приоритетная, а не адаптивная, как это может показаться в видео ролике. Что это значит, все очень просто, если при езде произойдет проблема с датчиками холла, микроконтроллер запомнит последние данные работы мотора и просто отключит на ходу их, и будет ехать как и раньше, причем о выходе их из строя вы даже не узнаете.
Многие скажут, это же хорошо, от части это так, но когда данный режим приоритетный, к сожалению, существует задержка при движении, которая приводит к тупизне отклика акселератора на включение мотора. Для тех кто в теме, тот поймет. В общем, контроллер отдает команды дольше из-за их анализа и принимает решения так же дольше.
А если добавить тупизну и рывки на старте, которые толком не лечатся, особого плюса для обычного потребителя данная функция не принесет.
Да и еще применяя разные контроллеры одной и той же мощности, я сделал вывод, что максимальная скорость зачастую зависит от прошивки, и может сильно варьироваться при одной и той же мощности контроллера на 36/48В от 10 до 35 км/ч в зависимости от мощности мотор колеса.
А повышение мощности контроллера для электротранспорта и при условии, что мотор будет тем — же самым зачастую незаметен для пилота, что уже доказано ни в одном из предыдущих обзоров.
Ну и как происходит жесткий переход на работу без датчиков холла на универсальном контроллере можно наблюдать в данном видео :
Источник
Как изготовить своими руками
Чтобы сделать простейший ДХ своими руками, понадобится:
- Ферритовое кольцо.
- Проводник для тока.
- Элемент Холла (микросхема ACS 711, например).
- Дифференциальный усилитель.
В кольце необходимо пропилить зазор, в котором расположится элемент Холла. Его потребуется подключить к дифференциальному усилителю, который представляет особой ОУ с отрицательной обратной связью.
Если изменение индукции – это своеобразная «ошибка», то ОУ выступает в роли усилителя ошибки, как показано на принципиальной схеме подключения на рисунке 1.
Рис. 1. Принципиальная схема подключения элемента Холла.
Вместо усилителя можно установить микроконтроллер и через ограничительный резистор подключить его к выводу микросхемы ACS 711 в режиме АЦП. Тогда к другому выводу микроконтроллера можно подключить полевой транзистор и получится генератор импульсов, который можно использовать в режиме широтно-импульсной модуляции, например.
Как купить подходящий контроллер для электровелосипеда или электроскутера?
Выбор контроллеров в настоящее время позволяет не бросаться на первые обнаруженные модели в интернете, а выбрать действительно именно то, что нужно. В отличие от обычных интернет-магазинов, предлагающих контроллеры есть продвинутые мастерские, позволяющие дополнительно вывести провода из контроллера под необходимые вам функции.
Большинство печатных плат контроллеров имеют максимальный функционал, но изначально при поставке он выводится не весь. Допустим, может быть отключена рекуперация или не выведен задний ход или круиз-контроль. Эти и многие другие функции можно вывести сразу при покупке контроллера по приемлемой цене.
В дополнение можно сказать, что существуют различные ценовые линейки контроллеров. В Москве представлены контроллеры, начиная от контроллеров для внутреннего Китайского рынка выполненные по схеме дешево и сердито, предназначенные для того чтобы ехать, они как в основном двух режимные, способные работать как с датчиками Холла, так и без них.
Источник
Как подключить ручку газа к контроллеру электровелосипеда
Для подключения ручки газа к контроллеру электровелосипеда применяются классические разъемы. Обычно на управляющем контроллере для этих целей предусмотрен темный разъем с 6 гнездами. Идентичный ему разъем есть и у ручки акселератора, оснащенной кнопкой включения электропитания и индикатором уровня заряда АКБ.
При отличиях в разъемах определить назначение проводков можно по их цвету:
- для управления скоростью – красный 5В, белый сигнальный, черный земля;
- для включения контроллера – замыкаемые проводки коричнево-желтой расцветки;
- для индикатора уровня заряда АКБ – зеленый.
Точные цвета проводов указываются в инструкции к конкретному изделию. При наличии на рычаге управления скоростью дополнительных кнопок и рычагов можно определить соответствующие им провода, используя тестер. При прозвонке он покажет сигнал при включенном состоянии кнопки и ноль при выключенном состоянии.
При подключении рукоятки провод следует без натяжки зафиксировать на раме с применением пластиковых хомутов или изоленты. Это важно не только для внешнего вида е-байка, но и для недопущения обрыва проводки при езде. Формулировка «без натяжки» означает, что при повороте руля не должен ощущаться перетяг. Для защиты контактов от влаги и пыли места соединений обрабатываются силиконовым герметиком.
Как проверить датчик холла
Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:
Судя по даташиту, на первую ножку подаем плюс питания, на вторую — минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.
Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.
Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания — на первый.
У меня под рукой оказался вот такой магнитик:
Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно — я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.
Как только я поднес магнит «красным» полюсом к датчику холла, то у меня светодиод сразу потух.
Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!
Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.
Кстати, читайте про биполярный транзистор.
А вот и видео работы
Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть — единичка, сигнала нет — ноль. То есть светодиод горит — единичка, светодиод потух — ноль.
Контроллер для электровелосипеда и электроскутера
Итак, зачем нужен контроллер? Во-первых он нужен для того чтобы электродвигатель, как внешний, так и мотор-колесо (далее МК) в принципе мог запуститься. Ведь у батареи два полюса – «плюс » и «минус », а у МК три фазных провода, и подключить, напрямую не получится.
Контроллер создает вращающееся магнитное поле в обмотке статора, получая обратную связь о положении ротора либо по датчикам Холла, либо по противо-ЭДС (при управлении двигателями без датчиков). Во-вторых, контроллер обеспечивает управление двигателем: позволяет регулировать скорость вращения электродвигателя, обеспечивает торможение двигателем (рекуперация ).
Контроллер работает по принципу понижающего преобразователя, и благодаря этому, фазный ток, протекающий по обмоткам электродвигателя, может значительно превышать батарейный ток, протекающий от батареи до контроллера. Именно контроллер определяет мощность, поступающую в электродвигатель, если у Вас есть МК номинальной мощностью 1кВт, то при «правильном » контроллере возможно кратковременно «вкачивать » до 2-2,5кВт мощности, при постоянном контроле температуры, разумеется.
Ликбез: принцип работы бесколлекторного двигателя
В качестве иллюстрации я возьму очень распространённый двигатель с двенадцатью катушками в статоре и четырнадцатью магнитами в роторе. Вариантов намотки и количества катушек/магнитов довольно много, но суть всегда остаётся одной и той же. Вот фотография моего экземпляра с двух сторон, отлично видны и катушки, и магниты в роторе:
Чтобы было ещё понятнее, я нарисовал его схему, полюса магнитов ротора обозначены цветом, красный для северного и синий для южного:
На датчики холла пока не обращайте внимания, их всё равно нет 🙂
Что будет, если подать плюс на вывод V, а минус на вывод W (вывод U не подключаем ни к чему)? Очевидно, будет течь ток в катушках, намотанных зелёным проводом. Катушки намотаны в разном направлении, поэтому верхние две катушки будут притягиваться к магнитам 1 и 2, а нижние две к магнитам 8 и 9.
Остальные катушки и магниты в такой конфигурации роли практически не играют, поэтому я выделил именно магниты 1,2,8 и 9. При такой запитке мотора он очевидно крутиться не будет, и будет иметь семь устойчивых положений ротора, равномерно распределённых по всей окружности (левая верхняя зелёная катушка статора может притягивать магниты 1, 3, 5, 7, 9, 11, 13).
Давайте записывать наши действия вот в такую табличку:
Угол поворота ротора | U | V | W |
0° | n.c. | — |
А что будет, если теперь подать плюс на U и минус на W? Красные катушки притянут к себе магниты 3,4,10 и 11, таким образом чуть-чуть повернув ротор (я по-прежнему выделяю магниты, за которые ротор тянет):
Давайте посчитаем, на сколько повернётся ротор: между щелями магнитов 1-2 и 3-4 у нас 51.43° (=360°*2/7), а между соответствующими щелями в статоре 60° (=360°/12*2). Таким образом, ротор провернётся на 8.57°. Обновим нашу табличку:
Угол поворота ротора | U | V | W |
8.57° | n.c. | — |
Теперь сам бог велел подать на U и — на V!
Угол поворота ротора | U | V | W |
17.14° | — | n.c. |
Теперь опять пора выровнять магниты с зелёными катушками, поэтому подаём напряжение на них, но красный и синий магниты поменялись местами, поэтому теперь нужно подать обратное напряжение:
Угол поворота ротора | U | V | W |
25.71° | n.c. | — |
C оставшимися двумя конфигурациями всё ровно так же:
Угол поворота ротора | U | V | W |
34.29° | — | n.c. |
Угол поворота ротора | U | V | W |
42.85° | — | n.c. |
Если мы снова повторим самый первый шаг, то наш ротор провернётся ровно на одну седьмую оборота. Итак, всего у нашего мотора три вывода, мы можем подать напряжение на два из них шестью разными способами 6 = 2*C 2 3, причём мы их все уже перебрали.
Запишем ещё раз всю последовательность для нашего двигателя:
Угол поворота ротора | U | V | W |
0° | n.c. | — | |
8.57° | n.c. | — | |
17.14° | — | n.c. | |
25.71° | n.c. | — | |
34.29° | — | n.c. | |
42.86° | — | n.c. |
Есть один нюанс: у обычного коллекторного двигателя за переключение обмоток отвечают щётки, а тут нам надо определять положение ротора самим.
Линейные (аналоговые) датчики холла
В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.
В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:
О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.
Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:
Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.
Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.
Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.
Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью.
Обучение контроллера
Для того, чтобы контроллер понимал, в какую сторону вращать мотор, определить сдвиг фаз датчиков холла, необходимо произвести обучение. Обучение нужно провести только при первом включении системы, дальше вся нужная информация будет храниться в энергонезависимой памяти контроллера.
При обучении также контроллер понимает на какое напряжение установлена батарея – 36 или 48 В, чтобы отключить питание системы, когда она окажется разряжена. Вообще функция защиты от переразряда присутствует и в BMS батареи, так что защита получается двойная и кто-то из них сделает это первым.
При обучении необязательно, чтобы батарея была заряжена полностью, ему достаточно любого значения из диапазона возможного напряжения. У батареи номиналом 36 В этот диапазон 30…42 В, у батареи 48 В – 39…54,6 В. Так как напряжение 48-ми вольтовой батареи при низком заряде залазит в область напряжений батареи 36-ти вольт, нужно её подзарядить перед обучением хотя-бы до 43 вольт.
Обучение проводится очень просто:
- Нужно вывесить колесо, чтобы оно могло свободно вращаться
- Соединить два провода обучения
- Подключить батарею
- Включить “зажигание” (красный тонкий провод на батареи)
- Если колесо вращается в верном направлении – выключаем “зажигание” и разъединяем провода обучения. Обучение закончено
- Если колесо вращается не в ту сторону, размыкаем провода обучения и соединяем снова, направление вращения изменится, выключаем “зажигание” и разъединяем провода обучения. Обучение закончено
Особенности датчика pas и ручки газа
Принцип управления мотор-колесом происходит с помощью датчика PAS и ручки газа, работа которой заключается в следующем. Велосипедист нажимает ее, а число импульсов тока, подающихся на обмотки мотор-колеса, изменяется. Главным преимуществом механизма считается отсутствие необходимости крутить педали для активации мотор-колеса.
При вращении педалей, датчик PAS подает сигнал для контроллера, запускающий мотор-колесо на полную мощность. Для непрерывной езды велосипедист должен постоянно вращать педали. Главной задачей системы считается передвижение в гибридном режиме без использования ручки газа, что позволяет сэкономить ресурс АКБ.
На сайте можно приобрести качественные комплектующие к электровелосипедам, которые станут неотъемлемой составляющей механизмов и прослужат длительный срок. Они позволят улучшить техническое состояние двухколесного агрегата. Выгодные условия приобретения станут приятным сюрпризом.
Запчасти поставляются от надежных проверенных производителей, которые уверены в качестве товаров. А вежливые консультанты помогут подобрать оптимальный вариант. Кроме того, компания оказывает послегарантийное обслуживание. Модернизировать велосипед с помощью запчастей так просто!
Источник
Параметры блока управления
Контроллеры обеспечены основными параметрами, благодаря которым электромоторы и батареи могут работать:
- Максимальный постоянный ток. Значение, которое отвечает за максимальный ток, который держит контроллер в течение установленного времени.
- Максимальный пиковый ток. Значение, которое выдерживается на минимальном отрезке времени. Данное число обычно гораздо больше, чем значение постоянного тока. Пиковый ток наблюдается при резком старте, когда в транспорте развивается большой крутящий момент.
- Максимальное напряжение аккумуляторов. Значение максимального количества используемых аккумуляторных банок. Если происходит повышение напряжения, контроллер может сгореть или выйти из строя. Разные модели имеют свой показатель напряженности. В основном они рассчитаны на 24, 48 и 60V.
- Внутреннее сопротивление. Данный параметр не является важным. Чем больше мощность контроллера, тем меньше сопротивление.
- Частота подачи импульсов. Значения данного параметра зависят от вида мотор-колес.
Принцип работы рычага газа и системы pas
При использовании ручки акселератора без системы PAS скорость движения регулируется дросселем. Использование электропривода при такой системе управления не зависит от вращения педалей, т.е. их можно вовсе не использовать. Дроссель работает по принципу автомобильной педали газа: чтобы ускориться или продолжить движение, дополнительные действия не требуются.
Система pedal-assist работает иначе. Она автоматически включает электродвигатель исключительно после того, как райдер начинает вращать педали. Старт настраивается – плавный или с пробуксовкой. Электромотор работает только при педалировании, причем степень его участия в движении можно настроить от минимума до режима «турбо». Настройка выполняется рулевым компьютером.
Основные преимущества использования ручки акселератора на е-байке – это:
- возможность точно регулировать скорость движения, увеличивая или уменьшая мощность электромотора;
- комфортные старты;
- отличная маневренность на дороге.
Разнообразие моделей
Большинство ручек газа совместимо с любыми управляющими контроллерами, т.к. все они подают 5 В и, как правило, поддерживают работу рычага газа на датчике Холла. Совместимость подтверждается наличием на управляющем контроллере 3 проводков для подсоединения к рычагу газа.
По размерам все модели рассчитаны на традиционную толщину руля 22,2 мм. По типу конструкции они бывают:
- Курковые или рычажные – модели квадроциклетного типа, имеющие для регулировки скорости небольшой рычаг (язычок), который управляется большим пальцем. Дополнительно на таком элементе управления обычно присутствует кнопка включения/выключения электрокомпонентов и индикатор заряда АКБ. При длительных поездках использование рычажных моделей приводит к перенапряжению запястья.
- На полную руку – модели скутерного или мотоциклетного типа, предусматривающие вращение почти всей рукоятки, кроме зафиксированной на руле основы. Некоторые модели дополнительно оснащаются замком зажигания и индикатором уровня заряда АКБ.
- На полруки – устройства типа «грипшифт» с вращаемой частью в виде широкого кольца. Практичное решение, отличающееся удобством использования и простотой управления. Дополнительно на корпусе обычно присутствует индикатор заряда АКБ и кнопка включения/выключения электроники. Угол поворота подвижного кольца, как правило, достигает 70°.
Ремонт ручки газа электровелосипеда
Ремонтные действия подразумевают выявление и устранение причины неполадок. Чаще всего они заключаются в замене вышедшего из строя датчика Холла на работоспособный аналог серии SS49E. Явный признак неисправности датчика выглядит так: при включении электровелосипеда уровень заряда АКБ рукоятка показывает, но при добавлении газа ничего не происходит.
В таком случае нужно найти среди проводов контроллера разъем, к которому подключается ручка газа. Обычно от нее идет 6 проводов: 2 для кнопки включения, 1 для индикатора заряда и 3 для датчика Холла. Нужно подать питание на контроллер электровелосипеда и найти мультиметром 5-вольтную линию. Обычно это красный и черный провод, а 3-й подключенный на этой линии провод – сигнальный.
Чтобы проверить, поступает ли с него сигнал при добавлении газа, нужно поставить на него плюсовой контакт мультиметра. При вращении грипсы или повороте курка значение напряжения на выходе датчика Холла должно меняться. Его оно не меняется, значит, датчик Холла неисправен и подлежит замене. Для этого:
- Разбирается ручка газа: снимается окошко, поддевается чем-то плоским и стягивается резиновая рубашка, аккуратно снимаются пластиковые фиксаторы-защелки. Главное – не спешить, чтобы не сломать их. Далее нужно снять возвратную пружину, открутить винтики и снять пластиковую крышку корпуса.
- Внутри находятся кнопка включения, индикатор зарядки батареи и датчик Холла. Его нужно вынуть из посадочного места и посмотреть написанный на нем номер. Вместо неисправного датчика нужно поставить такой же, но исправный. С ножек датчика нужно снять термоусадку и отпаять провода. Далее – надеть новую термоусадку и подпаять выводы нового датчика. После пайки – подтянуть термоусадку к датчику и прогреть феном. Аналогично поступить со всеми 3-мя проводами.
- Припаянный датчик Холла установить на место, и аккуратно уложить провода.
- Перед сборкой ручки желательно обработать все трущиеся элементы смазкой без растворителей, чтобы уменьшить выработку на пластике и продлить срок службы органа управления.
- Далее нужно правильно установить крышку корпуса, возвратную пружину, стакан, резиновую накладку, смотровое окошко и фиксирую
щую накладку.
- Отремонтированную и собранную ручку газа остается только протестировать.
Наглядно процесс разборки и сборки ручки акселератора электровелосипеда с целью замены датчика Холла продемонстрирован в видео к этой статье.
Типы контроллеров для электровелосипедов
По типу обратной связи с двигателем контроллеры подразделяются на: предназначенные для работы с датчиками Холла; предназначенные для работы без датчиков; универсальные, способные работать как с датчиками Холла, так и без.
Контроллеры различаются по форме выходного сигнала: одни создают сигналы прямоугольной формы (так называемый меандр, такие контроллеры обычно дешевле),
другие могут создавать чистую синусоиду. Существует и промежуточный вариант «модифицированная синусоида», можно сказать сглаженный меандр, но такие контроллеры не пользуются популярностью.
При использовании меандровых контроллеров Вы получите немного большую скорость вращения, чем при использовании синусных, но за это придется расплачиваться повышенным шумом двигателя, возникающем из-за микровибрации обмоток двигателя под действием сигнала такой формы.
Контроллеры могут по-разному реагировать на сигналы ручки газа, в одних вы управляете скоростью, в других мощностью, или даже крутящим моментом.
Установка
1. Снимите старое колесо с велосипеда. Переставьте покрышку, камеру и ободную ленту на мотор-колесо. (В случае отсутсвия ободной ленты — можно промотать внутреннюю сторону обода обычной изолетной в несколько слоёв)
2. Установите мотор-колесо на велосипед на место старого колеса. Провод должен выходить с правой стороны. Прорезь на оси мотора (откуда выходит провод) должна быть направлена вниз, для предотвращения попадания влаги внутрь колеса. Возможно для этого придётся снять, повернуть на пол оборота и надеть обратно фиксирующие шайбы с зубцом, надетые на ось мотора.
3. Для любых передних моторов, а также для мощных задних моторов (Classic, Turbo) — необходима установка усилителей дропаутов. Допустимо не ставить усилители для заднего мотора Лайт. Для переднего мотора Лайт можно ограничиться одним.
Из-за немного различающихся от экземпляра к экземпляру осей моторов, отверсие под ось на усилителе специально сделано немного уже, для того чтобы на любом моторе усилитель сидел плотно и не болтался. Поэтому, скорее всего, с внутренней стороны отверстия усилителя придётся доработать напильником так, чтобы усилитель налезал на ось, но сидел очень плотно. Очень важно не переборщить — усилитель не должен болтаться!
4. Перед установкой всего остального рекомендуем подключить к контроллеру колесо, ручку газа и батарею (см ниже) и убедиться что всё работает нормально.
5. Закрепите на велосипеде батарею и контроллер.
- Батарея должна быть защищена от ударов о раму или контроллер мягким уплотнителем.
- При вертикальной установке контроллера — лучше располагать его проводами вниз, чтобы по ним внутрь не затекала влага.
6. Установите на руль ручку газа.
- Если грипса тугая, резиновая и никак не хочет сниматься сама — можно положить велосипед на бок, грипсой вниз, и забить под неё отвёртку на всю длину. Затем в образовавшуюся щель между отвёрткой и рулём, под грипсу, залить воды. Затем вынуть отвёртку и провернуть грипсу — после этого она должна сняться очень легко!
(7.) Установите на руль дисплей, если есть.
(8.) Устаровите на руль ручку(
и) тормоза, если есть.
(9.) Установите сенсор помощи педалям, если есть. Для этого понадобится специальный съёмник шатуна.
10. Подключите к контроллеру все провода (см ниже).
11. Убедитесь что всё работает.
12. Зафиксируйте провода стяжками или другим способом.
Устройство ручки газа электровелосипеда
Внутреннее строение всех моделей практически одинаково. Внутри есть датчик Холла, а на корпусе прикреплен постоянный магнит. В зависимости от текущего положения рычага управления скоростью датчик определяет позицию магнита, меняет свое выходное напряжение и подает управляющий сигнал на контроллер.
Красный проводок обеспечивает подачу напряжения 4,5 В от контроллера. Также есть черный провод (земля) и белый сигнальный, который в зависимости от положения рычага выдает напряжение 2–3,5 В. На контроллер обычно подается управляющее напряжение 0,8–4,2 В.
Типичное место установки ручки газа на электровелосипеде – правая часть руля. Чтобы избежать поломки рукоятки, при старте нужно избегать ее резкого вращения до упора. К тому же, плавный старт благотворно сказывается на работе электронных компонентов и помогает избежать поломки.
Электровелосипед своими руками: контроллер
Как выбрать контроллер для электровелосипеда, какие контроллеры бывают и в чём их разница?
Прежде чем ответить на этот вопрос, давайте разберёмся, зачем вообще нужен контроллер.
Наверняка почти каждый любознательный представитель мужской половины человечества в детстве имел дело с моторчиками, установленными в детских игрушках, например, электрических машинках или лодках.
Эти моторчики представляли собой двигатели постоянного тока . Для вращения к ним достаточно было подключить батарейку, и направление вращения менялось в зависимости от полярности подключения.
В том случае обмотки ротора (вращающейся части электродвигателя) подключаются к источнику питания по очереди через пару графитовых щёток, таким образом ротор приводится во вращение.
В электровелосипедах же используются бесщёточные моторы , а точнее трёхфазные асинхронные двигатели, которым недостаточно просто подать напряжение питания от батареи. На первый взгляд кажется, что всё только усложнилось, но дело вот в чём.
Во-первых, двигатели постоянного тока имеют узел, который требует обслуживания и периодического ремонта — это как раз те самые щётки и коллектор, по которому они скользят.
Во-вторых, КПД этих двигателей ниже, а вес больше. В третьих, они имеют ограниченный диапазон скоростей вращения. Всех этих недостатков трёхфазные асинхронные двигатели лишены.
Но последним требуется контроллер — устройство, обеспечивающее коммутацию обмоток строго по определённому алгоритму.
В зависимости от типа двигателя (с датчиками положения ротора или без) от контроллера к двигателю идёт либо только три силовых провода, либо к ним добавляются 5 или 6 тонких проводов.
Силовые провода — это те, которые непосредственно подключены к обмоткам двигателя. А тонкие (слаботочные) провода — это провода питания и сигналов с датчиков положения.
На фото силовые провода (синий, зелёный и жёлтый) спрятаны в стеклоармированных трубках, а слаботочные видны: синий, зелёный и жёлтый — это сигналы с датчиков положения, красный и чёрный — это питание датчиков, а белый — с датчика температуры, который спрятан под платой ближе к обмоткам.
Контроллер определяет положение ротора по датчикам и коммутирует напряжение батареи на необходимую обмотку двигателя.
Так в каких случаях датчики положения необходимы в двигателе, а в каких нет?
Дело в том, что в тех случаях, когда двигатель должен стартовать со значительной нагрузкой на валу (в нашем случае нужно сдвинуть с места велосипед с наездником) используются двигатели с датчиками.
Если же на старте нагрузки нет или она незначительная (например, вентиляция), используются так называемые бездатчиковые двигатели. Хотя, в некоторых случаях и на электровелосипеды малой мощности ставят бездатчиковые двигатели.
Соответственно, и контроллеры бывают как для двигателей с датчиками, так и для двигателей без датчиков положения.
Теперь давайте поговорим об исполнении, то есть о корпусе и размещении контроллера.
И здесь мы снова переводим акцент на двигатели, которые устанавливаются либо в колесо (вместо втулки), либо в кареточный узел.
В случае мотор-колеса, то есть мотора, заспицованного в обод, контроллер является отдельным блоком со своим собственным корпусом, и размещается отдельно от двигателе (за исключением нескольких специфических решений).
В случае же центрального (кареточного) мотора контроллер устанавливается внутри корпуса двигателя, что позволяет сократить количество видимой проводки на электровелосипеде.
Есть ещё одна важная характеристика контроллера, которая влияет на дальность поездки, или, другими словами, на эффективность использования энергии, накопленной в батарее.
Я имею в виду тип ассистента , или помощника, поддерживаемого контроллером.
Самый распространённый — PAS (Pedal Assist Sensor). Данное исполнение представляет собой пару из датчика Холла и кольца с магнитами. При вращении педалей магниты движутся мимо датчика и последний отправляет соответствующий сигналы на контроллер.
То есть PAS регистрирует сам факт вращения педалей, независимо от того, насколько быстро их крутит велосипедист и насколько сильно на них давит.
Менее распространён другой тип — Torque sensor , или датчик крутящего момента. Он-то как раз измеряет усилие, прилагаемое к педалям, и сообщает его контроллеру.
Несложно догадаться, что второй вариант более эффективен в плане экономичности использования заряда батареи, так как он не даст велосипедисту крутить педали вхолостую.
Более того, отпадает необходимость использования ручки газа, ведь при сильном нажатии на педаль контроллер подаст на двигатель максимальную мощность.
Теперь давайте взглянем на рынок контроллеров для электровелосипедов. Начнём с одного из самых заказываемых на Aliexpress контроллеров .
Если верить заявленным на этикетке характеристикам, он рассчитан на работу с напряжением 36 или 48 вольт и максимальный ток 30 ампер. Габариты контроллера 8 см х 15 см.
Рассмотрим провода, которые из него выходят, и разберёмся для чего каждый из них предназначен. В общем-то, продавец расписал что есть что в описании товара, но не всем эти надписи будут понятны.
Итак, по порядку:
1. Motor (синий, зелёный и жёлтый) — три силовых провода для подключения мотора. О них я писал выше.
2. Speed meter — сигнальный провод к датчику измерения скорости. Но ведь у датчика скорости два провода! Правильно. Второй провод («земля», или GND) придётся взять от другого разъёма, например, от разъёма PAS.
3. PAS — три провода к датчику педального ассистента. Как правило, чёрный провод — это GND, так что его можно использовать как второй провод датчика скорости.
4. Alarm — два разъёма для подключения сигнализации.
5. H-brake и Low-brake — провода для подключения датчиков тормоза. В одном случае датчик (или кнопка) срабатывает при замыкании сигнального провода на «землю» (GND), в другом — при подаче 5 вольт.
6. Cruising — подключение функции круиз-контроль.
7. Throttle — три провода для подключения ручки газа: «земля» (GND), 5В и сигнальный, напряжение на котором меняется в зависимости от положения ручки газа.
8. Battery and Ignition — два силовых провода для подключения к батарее и один сигнальный для включения контроллера. Когда батарейное напряжение подаётся на сигнальный провод, контроллер запускается.
9. Reverse — два провода, при замыкании которых двигатель будет крутиться в обратном направлении.
10. Hall sensor — разъём для подключения мотора, а точнее — датчиков положения, установленных в моторе. О них я писал выше.
11. 3 Speed — три провода для выбора максимальной скорости движения.
12. Self learn — два провода, при замыкании которых включается режим самообучения контроллера. После того, как контроллер выполнил процедуру обучения, провод размыкается.
Кстати, данный контроллер не подразумевает подключение дисплея,
В чём недостаток использования контроллера в таком виде? Дело в том, что когда мы соединим все провода с остальными элементами системы, у нас получится приличная вязанка, и её надо будет где-то прятать.
Как правило, контроллер вместе с вязанкой прячут в велосипедной сумке, подвешенной на раме. Но, как показала практика, со временем от вибраций и воздействия влажной окружающей среды происходит окисление контактов и нарушение соединений.
Также есть вариант использования герметичного пластикового корпуса , с того же Aliexpress, но тут возникает другая проблема.
В данном контроллере установлено 12 силовых транзисторов, прикрученных к корпусу контроллера для охлаждения. То есть подразумевается, что контроллер будет находиться в окружающей среде, а в идеале — обдуваться потоком набегающего воздуха.
Однако в закрытом герметичном корпусе охлаждение будет затруднено, и контроллер может выйти из строя в результате сгорания транзисторов.
Для решения данной проблемы используют герметичные разъёмы и интеграционный кабель.
На данном фото слева направо расположены следующие разъёмы:
1. Интеграционный кабель — это кабель, объединяющий в себе все провода, идущие на руль: для подключения дисплея, ручки газа и датчиков тормоза.
2. Разъём для подключения фонаря.
3. Разъём для подключения PAS-сенсора.
4. Разъём для подключения двигателя. Объединяет в себе три силовых провода, 5 проводов на датчики положения и 1 провод на датчики температуры и скорости.
5. Жёлтый разъём предназначен для подключения батареи.
Несмотря на то, что данный контроллер менее мощный (22 ампера против 30 ампер в первом случае), стоит он в три раза дороже.
Но эта разница в цене полностью оправдана, так как надёжность и долговечность конструкции позволит один раз собрать электровелосипед и эксплуатировать его на протяжении нескольких лет без каких-либо проблем.
Примерно так же, как опытные монтажники выбирают профессиональный надёжный инструмент чтобы быть в нём полностью уверенным и работать с удобством и удовольствием.
Кроме контроллеров с Aliexpress в продаже имеются контроллеры Kelly , представленные на официальном сайте kellycontrollers . Это хорошие контроллеры, но они стоят дороже.
Например, версия на 25 ампер на момент написания статьи имеет цену 141,54 евро, что примерно в 3 раза дороже предыдущего рассматриваемого нами варианта.
Также следует упомянуть об отечественной разработке. Компания Electronbikes представила компактную модель контроллера , и обещает начать серийный выпуск до конца текущего года.
На фото представлен новый контроллер (снизу) в сравнении с китайским аналогом (сверху), оба рассчитаны на ток 45 ампер.
Конечно, нижний контроллер будет помещён в корпус, служащий радиатором, но очевидно, что его габариты не сравнятся с китайским аналогом.
Особенно интересна новая разработка тем, что контроллер будет поддерживать Torque-сенсор .
И конечно в данной статье нельзя не упомянуть о контроллерах, установленных в центральных моторах Tongsheng , представленных на Aliexpress. Эти контроллеры также поддерживают Torque-сенсор.
Многие начинающие сборщики электровелосипедов заметят, что я не стал рассматривать мощные контроллеры, рассчитанные на большие токи.
Дело в том, что мощные контроллеры подразумевают мощные батареи, мощные двигатели и, как следствие, очень крепкие (часто стальные) пространственные рамы , которые способны выдержать большие весовые нагрузки.
Тогда это уже будут не электровелосипеды (весом до 25 кг), а электромотоциклы, вес которых достигает 50 кг и более, и кручение педалей теряет смысл.
Я же всё-таки являюсь сторонником лёгкого и компактного оборудования, и придерживаюсь мнения, что электровелосипед должен оставаться велосипедом.
Эффект холла
Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.
Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C! Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца.
Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:
где
Supply Voltage — напряжение питания датчика
Ground — земля
Voltage Regulator — регулятор напряжения
А — операционный усилитель
Hall Sensor — собственно сама пластинка Холла
Output transisitor Switch — выходной переключающий транзистор (транзисторный ключ)