Подборка плат усилителей класса D с хорошим звуком для сборки своего усилителя мощности / Подборки товаров с Aliexpress и не только / iXBT Live

ab Новости

Описание работы схемы усилителя

Стерео сигнал подается на разъем In через C1 (100nF) и R1 (2,2 М) на первом канале и C2 (100nF) и R2 (2,2 М), в другом канале. Затем он поступает на вход операционного усилителя U1A (TL074).

Потенциометром P1 (220k), работающем в цепи обратной связи усилителя U1A, выполняется регулировка усиления всей системы. Далее сигнал подается на фильтр второго порядка с элементами U1B (TL074), R3 (68k), R4 (150к), C3 (22nF) и C4 (4,7 nF), который работает как фильтр Баттерворта.

Через цепь C5 (220nF), R5 (100k) сигнал поступает на повторитель U1C, а затем через C6 (10uF) на вход усилителя U2 (TDA2030).

Конденсатор С6 обеспечивает разделение постоянной составляющей сигнала предусилителя от усилителя мощности. Резисторы R7 (100k), R8 (100k) и R9 (100k) служат для поляризации входа усилителя, а конденсатор C7 (22uF) фильтрует напряжение смещения. Элементы R10 (4.7 k), R11 (150к) и C8 (2.

2 uF) работают в петле отрицательной обратной связи и имеют задачу формирования спектральной характеристики усилителя. Резистор R12 (1R) вместе с конденсатором C9 (100nF) формируют характеристику на выходе.

Конденсатор C10 (2200uF) предотвращает прохождение постоянного тока через динамик и вместе с сопротивлением динамика определяет нижнюю граничную частоту всего усилителя.

Полезное:  Электрозажигалка для сигарет своими руками

Защитные диоды D1 (1N4007) и D2 (1N4007) предотвращают появление всплесков напряжений, которые могут возникнуть в катушке динамика. Напряжение питания, в пределах 18-30 В подается на разъем Zas, конденсатор C11 (1000 — 4700uF) — основной фильтрующий конденсатор (не экономьте на его ёмкости).

Стабилизатор U3 (78L15) вместе с конденсаторами C12 (100nF), C15 (100uF) и C16 (100nF) обеспечивает подачу напряжения питания 15 В на микросхему U1.

Элементы R13 (10k), R14 (10k) и конденсаторы C13 (100uF), C14 (100nF) образуют делитель напряжения для операционных усилителей, формируя половину напряжения питания.

Усилитель для сабвуфера на основе микросхемы tda7294

В связи с тем, что сабвуфер воспроизводит низкие частоты, поэтому нам нужен эффективная интегральная микросхема для его построения. Большой популярностью пользуется микросхема TDA7294. На ее основе можно достичь мощности в 100 Вт, однако условием для этого является наличие двухполярного питания 30-35 В.

ПараметрУсловияМинимумТиповоеМаксимумЕдиницы
Напряжение питания±10±40В
Диапазон воспроизводимых частотсигнал 3dbВыходная мощность 1Вт20-20000Гц
Долговременная выходная мощность (RMS)коэф-т гармоник 0,5%:Uп = ± 35 В, Rн = 8 ОмUп = ± 31 В, Rн = 6 ОмUп = ± 27 В, Rн = 4 Ом606060707070Вт
Пиковая музыкальная выходная мощность (RMS), длительность 1 сек.коэф-т гармоник 10%:Uп = ± 38 В, Rн = 8 ОмUп = ± 33 В, Rн = 6 ОмUп = ± 29 В, Rн = 4 Ом100100100Вт
Общие гармонические искаженияPo = 5Вт; 1кГцPo = 0,1-50Вт; 20-20000Гц0,0050,1%
Uп = ± 27 В, Rн = 4 Ом:Po = 5Вт; 1кГцPo = 0,1-50Вт; 20-20000Гц0,010,1%
Температура срабатывания защиты1450C
Ток в режиме покоя203060мА
Входное сопротивление100кОм
Коэффициент усиления по напряжению243040дБ
Пиковое значение выходного тока10А
Рабочий диапазон температур700C
Термосопротивление корпуса1,50C/Вт

Поэтому для реализации усилителя будет необходим преобразователь напряжения, который обеспечит нам двухполярное питание и достаточные значения напряжения питания. Способы сборки преобразователя напряжения рассмотрим в следующей статье. Параметры микросхемы TDA7294, приведены в таблице ниже.

Микросхема способна работать продолжительное время на мощности в 70 Вт. В связи с довольно большими значениями мощности, понятно, что микросхеме нужен теплоотвод, устанавливается он в обязательном порядке, желательно также дополнить теплоотвод кулером, для более долгой и надежной работы микросхемы.

Для этих целей можно спокойно использовать кулер и радиатор с любого ПК их параметров достаточно для надежной защиты микросхемы. Схемы усилителей построенные на основе TDA7294, требуют минимум обвесных элементов, найти их легко стоят они копейки, сама микросхема обойдется вам в 150-200 рублей.

  1. Напомним, что в случае использования усилителя в автомобиле желательно и даже обязательно обеспечить фильтрацию питающего напряжения микросхемы, порой недостаточно даже простой фильтрации конденсаторами, а необходимо делать LC-фильтр.
  2. При построении мостовой схемы на TDA7294 можно «разогнать» мощность до 180-200 Вт, однако явным недостатком в этом случае является фиксированное значение сопротивления колонки, оно должно составлять не менее 8 Ом.
  3. Автор; АКА Касьян

Варианты собранных усилителей

Микросхемы имеют довольно высокую выходную мощность (около 22Вт х 2) и для её охлаждения понадобится радиатор, площадью не менее 100кв см. Можно применить радиатор от процессора.

Прежде чем подавать питание, внимательно проверьте правильность монтажа.На входе усилителя надо поставить сдвоенный переменный резистор 47-100 кОм для регулировки громкости.

Вышеизложенные схемы для начинающих радиолюбителей, вполне лёгкие в сборке и не нуждаются в настройке. Собраны на дешёвых деталях, которые можно купить в любом радиомагазине. Детали можно также найти в автомагнитолах.

  • Доработка усилителя «Радиотехника У-101-стерео»
  • У многих со времен СССР остались усилители мощности «Радиотехника У-101-стерео». В статье, ниже рассмотрены его схема, характеристики и доработки.

    Мзч с малыми нелинейными искажениями

    Основные технические характеристики:

    • Номинальная выходная мощность на нагрузке 8 Ом, Вт … 25
    • Коэффициент гармоник, %, не более ……………….. 0,003
    • Скорость нарастания выходного напряжения , В/мкс …. не менее 40
    • Номинальное входное напряжение, В ……………….. 0,7 Подробнее…
  • Активная акустическая система.
  • Всем хороши минимузыкальные центры,  и широкий набор функциональных возможнос­тей, и неплохие характеристики, мало места занимают в квартире. Одно плохо, — выходная мощность невысокая, обычно не более 5-10W. Конечно, можно купить более мощный аппарат, но музыкальный центр с выходной мощностью около 100W стоит на порядок дороже. А это существенно для кармана многих наших граждан. Подробнее…

  • Аннтенные усилители — SWA
  •  В публикуемой здесь статье наш постоянный автор анализирует схемотехнику антенных усилителей польского производства и обосновывает свой осознанный подход к их выбору с точки зрения коэффициентов шума и усиления.

    Он также дает рекомендации по ремонту таких устройств, довольно часто выходящих из строя от грозовых разрядов, и устранению самовозбуждения.

    Это позволит, надеемся, многим радиолюбителям не только выбрать необходимый усилитель, но и улучшить его работу.  Подробнее…

Популярность: 55 904 просм.

Динамический режим работы

Музыка даже отдаленно не напоминает монотонный синусоидальный сигнал частотой 1 кГц, которым принято тестировать усилитель. И дело здесь не в эстетике – проводили исследования по восприятию человеком разных составляющих звуковых форматов: музыки, речи.

Для музыки свойственны плавные переходы между частями, но и в ней встречаются моменты с довольно агрессивным изменением уровня звука. Динамическому режиму усилителя характерны следующие потенциальные проблемы:

  • Термоудар.
  • Низкая скорость нарастания выходного напряжения.

«Термоудар» встречается в большинстве выходных каскадов класса АВ, проявляясь в большей или меньшей степени – многое зависит от удачности конструкции теплоотводов и схемотехнического решения. Обычный вариант выходного каскада выглядит примерно так (схема упрощена до основных узлов):

Вывод «А» – предшествующая часть схемы. Для компенсации искажений, свойственных классу В (ступенька) в выходном каскаде задается небольшой ток через выходные транзисторы, что переводит усилитель в класс АВ и уменьшает уровень искажений. Осуществляется сие через введение дополнительного источника питания, приоткрывающего транзисторы выходного каскада, собранных на эмиттерных повторителях Q2-Q4 и Q3-Q5.

Такой дополнительный источник чаще всего выполняется на транзисторе (Q1 и резисторы делителя R2-R3), но встречаются варианты с гирляндами кремниевых диодов. Напряжение между выводами E и F задает ток покоя усилителя, но напрямую его выставить нельзя, приходится управлять напряжением в точках C и D, которое больше нужных точек E и F на напряжение перехода «база-эмиттер транзисторов» Q4 и Q5. Увы, точками C и D управлять по-прежнему затруднительно, вот и приходим к напряжению источника, точкам A и B.

Для стабилизации тока порядка 0.1 А требуется выдержать между точками E-F напряжение 0.1*0.6= 0.06= 60 мВ. Напряжение источника питания должно быть больше 60 мВ на величину падения база-эмиттерных переходов транзисторов, участвующих в процессе, то есть Q2, Q3, Q4, Q5 – четыре штуки.

Но речь пока идет о термостабильности, поэтому перейдем к ней. Дело в том, что напряжение база-эмиттерного перехода, как и любого p-n перехода, зависит от его температуры. Примерный коэффициент описывается зависимостью -2 мВ на 1 градус. Это означает, что при сохранении прежнего тока и повышении температуры перехода его напряжение уменьшится на 2 мВ.

Температура кристалла в транзисторе легко может нагреваться на 50 градусов к температуре среды, причем довольно быстро. Если перевести этот прирост температуры в изменение напряжение «база-эмиттер», то оно уменьшится на 50*2=100 мВ. Оба транзистора в паре нагреваются примерно одинаково и изменение напряжения в точках C и D составит в два раза большую цифру, 0.2 вольта.

Если предположить, что источник питания смещения лишен термокомпенсации, то между C и D останется прежнее напряжение, а уменьшившееся напряжение переходов транзисторов вызовет повышение напряжение между точками E и F на 0.2В, что приведет к увеличению тока покоя с заданных 0.1 А до 0.26/0.6 = 0.43 А – уже весьма расточительно.

Прошу учесть, в рассмотрении не участвовало изменение температуры транзисторов Q2 и Q3, итог мог быть еще хуже. Выходит, что источник питания для установки тока смещения должен быть термокомпенсированным, как изображено на схеме – образцовое напряжение «база-эмиттер» транзистора Q1 зависит от температуры.

Увы, компенсация весьма условна. Тепловой коэффициент источника примерно -2*4 = -8 мВ/градус, а нагреваются транзисторы выходного каскада неодинаково. Если с выходными Q4 и Q5 всё понятно, то с предыдущей ступенью, Q2 и Q3 ничего не ясно. С одной стороны, на них рассеивается небольшая тепловая мощность и их можно не устанавливать на радиатор.

Обычная рекомендация – устанавливать транзистор источника (Q1) на тот же радиатор, где смонтированы выходные транзисторы (Q4, Q5). При этом следует аргументация, что этим достигается термостабилизирование тока покоя. Напряжения «база-эмиттер» зависят от температуры кристалла, которая заведомо больше температуры корпуса транзистора.

Последняя крайне необходима из-за того, что на общий радиатор устанавливается несколько транзисторов и надо обеспечить электрическую изоляцию металла их корпуса от другого транзистора и цепей схемы. (Вообще-то, признаком хорошего тона является соединение крупных металлических узлов c цепью «земля»).

Сюда же стоит прибавить сложность размещения силовых транзисторов близко друг от друга, для уменьшения перепадов температуры между силовыми транзисторами, и дополнительного транзистора термокомпенсации. Не в каждом усилителе устанавливают вентилятор для обдува радиатора, а это означает применение действительно большого радиатора и обязывает разнести силовые транзисторы друг от друга по поверхности радиатора.

В работе, при установившемся тепловом режиме, происходит следующее: 1. Температура кристалла в полтора-два раза больше температуры радиатора. Естественно, под «температурой» понимается нагрев над окружающей средой. 2. Тепловой коэффициент источника смещения рассчитан на четыре перехода, а основной нагрев происходит только в двух, на выходных транзисторах (Q4, Q5).

Первый пункт говорит, что точная термокомпенсация по температуре радиатора будет ошибаться в два(?!!) раза. Второй означает, что компенсация источника работает в два раза эффективнее, чем надо. Если сложить оба пункта, то недокомпенсация два раза сложится (точнее «перемножится») с перекомпенсацией в источнике и будет полный порядок.

Обычно, так и происходит, но если говорить про установившийся режим. А вот если применить эти же выкладки при динамическом режиме работы, когда за громким уровнем следует тихий, то вот тут-то и начинаются проблемы. Уже говорилось, но перечислю в более четкой форме: 1.

Температура (перегрева) кристалла много выше температуры (перегрева) радиатора. Причем, транзистор очень быстро скидывает эту разность температур при сбросе рассеиваемой тепловой мощности. 2. Датчик тепловой компенсации находится (механически) далеко от силовых транзисторов. 3. Нагрев и охлаждение одной части радиатора относительно долго распространяется на другие участки радиатора.

В результате, тепловая компенсация источника тока покоя оооочень сильно задержана во времени от температуры транзисторов. Если в статическом режиме можно удержать ток покоя в разумных рамках, то в динамике из-за запаздывания компенсации источника смещения, возможно как значительное увеличение тока покоя (при резком повышении уровня сигнала), так и значительное его уменьшение (переход к тихой музыке).

Что до моего примера, то давайте «прикинем» цифры. Положим, нагрев радиатора 20 градусов (к окружающей среде), что означает температуру кристалла транзистора 40 градусов (расчеты примерны). При резком сбросе громкости звука, скорее при «очень резком и сильном» сбросе, температура радиатора в месте крепления транзистора упадет до 15 градусов, а кристалла до 20 градусов.

Ранее рассчитывалось, что ток покоя 0.1 ампера получался при напряжении 60 мВ, его и пытается поддерживать термокомпенсация источника смещения на транзисторе Q1. Одно «но» – температура Q1 еще «долго» останется прежней, а вот выходные транзисторы Q4, Q5 уже остыли «в два раза».

По сравнению с ранее установившейся тепловой стабильностью разница температур составила 20 градусов или -2*20*2 = -80 мВ. Складываем с 60 мВ, которые поддерживает схема смещения и получаем 60-80=-20 мВ. То есть транзисторы ушли в отсечку с нулевым током покоя.

Обратите внимание, я «совершенно забыл» о транзисторах предвыходного каскада, Q2 и Q3. По идее, они не должны особо нагреваться и вреда от них не ожидается. Но, они всё же нагреются. Их установка на общий радиатор не улучшит ситуацию с термоударом, ведь температуру «кристалл-радиатор» выходных транзисторов контролировать (и компенсировать) нечем.

Теперь по скорости нарастания выходного сигнала.

Для симуляции используется следующая схема:

Эмуляция ограничения скорости нарастания достигается заменой верхнего плеча выходного каскада на нерегулируемый источник тока, транзистор Q5, и шунтирование нагрузки конденсатором (C1) чрезмерно большой величины. Для более наглядной демонстрации, в качестве сигнала применяются два источника – 2 кГц и 20 кГц. При этом получается следующая форма выходного сигнала:

Напоминаю, красный график образцового сигнала, зеленый – выходного.

Скорость нарастания выходного напряжения ограничена, что вызывает отставание зеленого графика по отношению к красному. Особенно интересен фрагмент между 250 мкс и 300 мкс – зеленый график начинает отставать от красного и накапливается ошибка обратной связи.

Так будет до тех пор, пока ранее накопленная ошибка не будет компенсирована новой ошибкой, с другим знаком. Это происходит только при 300 мкс, обратная связь «спохватывается» и начинает уменьшать напряжение. Интересно, что опять следует перерегулирование, зеленый график уменьшается даже ниже красного. Последующие два периода частотой 20 кГц повреждаются по тому же сценарию.

История

В мире Hi-Fi класс D имеет самую тяжелую судьбу, и его развитие происходило не благодаря объективным преимуществам, а скорее вопреки сложившемуся мнению. Началось все с того, что классу D буквально сразу повесили обидный, по мнению некоторых аудиофилов, ярлык «цифровой усилитель».

Еще одно заблуждение сопровождающее класс D — возраст. Есть мнение, что класс D был разработан совсем недавно и является побочным продуктом современных цифровых технологий. На самом деле, класс D имеет богатую историю, и его первые реализации проектировались еще в эпоху радиоламп.

Использовать схемотехнику такого типа для усиления звука (класс D в ламповом исполнении) предложил наш соотечественник Дмитрий Агеев, и произошло это в 1951 году. Примерно в это же время над практической реализацией подобного устройства работал английский ученый Алекс Ривз, а в 1955 году их коллега Роже Шарбонье из Франции, создавая аналогичную схему, впервые применил термин «класс D».

В самом начале, когда велись главным образом теоретические изыскания, судьба класса D казалась безоблачной. Его расчетные характеристики в буквальном смысле достигали предела совершенства. Однако, первая коммерческая реализация 1964 года выявила массу слабых мест, главное из которых — невозможность добиться по-настоящему достойного качества звучания на элементной базе того времени.

Производители не оставляли надежд, и в семидесятых годах попытки вывести усилители класса D на рынок предпринимали такие гиганты Hi-Fi-индустрии, как Infinity и Sony. Обе затеи провалились по той же самой причине, что и в первый раз. Подходящие по быстродействию и классу точности транзисторы стали производиться серийно лишь в восьмидесятых годах, после чего качественная реализация усилителей класса D и стала реальностью.

Коммутационные искажения

Ранее рассматривались довольно абстрактные типы искажений, свойственные различным электронным компонентам. Но каждому типу усилительных элементов присущи какие-то свои специфические моменты, которые могут оказать негативное влияние на качество работы.

Специфической особенностью работы транзисторов является накопление заряда неосновных носителей в активном состоянии. Для выключения транзистора (или просто резкого снижения тока) необходимо вывести этот заряд, что требует наличие элементов отвода тока из базы и, вообще говоря, занимает весьма приличный интервал времени.

Схема:

На первый взгляд, схема ничем особенным не выделяется, разве что отсутствует смещение между базами Q1 и Q2, но присмотримся внимательнее – резисторы R10 и R11 запирают выходные транзисторы в те моменты, когда они должны быть выключены. Выходной каскад класса В, то есть проводит либо верхний (Q3), либо нижний (Q4) транзистор, в зависимости от полярности выходного напряжения.

В модели номиналы резисторов R10, R11 выбраны заведомо большей величины, что затрудняет рассасывание заряда и транзистор выключается продолжительное время. Ранее в симуляциях было рассмотрено напряжение в контрольных точках, но в данном тесте гораздо больший интерес несет ток выходных транзисторов.

Форма сигнала:

Возьмем центральный участок. В момент перехода напряжения через ноль ток верхнего транзистора (красный график) уменьшается, но недостаточно быстро – нижний транзистор начинает открываться раньше, чем успел рассосаться заряд из верхнего транзистора. Как следствие – существует небольшое время, когда оба транзистора находятся в проводящем состоянии.

Вообще-то, для усилителей это состояние считается нормальным, вспомните о классе А, но не в данном случае. Закрывание транзистора идет не плавно, а резко и бесконтрольно (ограничено временем и характером рассасывания заряда), что вызывает необходимость адекватной реакции схемы управления для формирования компенсирующего тока.

Это тоже было бы нормально, но такой режим работы (высокая частота) возникает на очень небольшой интервал времени. Увы, общее усиление всего усилителя обязано уменьшаться с ростом частоты, иначе пострадает устойчивость или все свалится в самовозбуждение.

Приложение к статье

Операционные усилители делятся на несколько категорий,
самая популярная – ОУ широкого применения, имеющие не плохие параметры,
но на сегодня считающиеся средними. Есть ОУ прецизионные, предназначенные
для использования в измерительной аппаратуре. А есть специально для аудиоустройств.

Чем они отличаются кроме цены?
Прежде всего принципиальной схемой. Для примера возьмем принципиальную
схему ОУ широкого применения TL071 и считающийся звуковым:

Принципиальная схема операционного усилителя TL071
Рисунок 1. Принципиальная схема операционного усилителя TL071Принципиальная схема операционного усилителя AD744
Рисунок 1. Принципиальная схема операционного усилителя TL071Подборка плат усилителей класса D с хорошим звуком для сборки своего усилителя мощности / Подборки товаров с Aliexpress и не только / iXBT Live

Рисунок 2. Принципиальная схема операционного усилителя AD744

Кроме схемотехнических отличий данные ОУ отличаются
друг от друга используемыми транзисторами – у AD774 более скоростные транзисторы,
что конечно же сказывается на частоте единичного усиления. У AD744 частота
единичного усиления не менее 13 МГц, а у TL071 – 3 МГц.

Так же у них отличается
уровень THD – у AD744 это 0,0003%, у TL071 от Texas Instruments – 0.003%,
а у TL071 от STMicroelectronics – 0.01%, Ну и наконец в принципиальной
схеме AD744 в генераторе тока имеются два подстроечных резистора, да,
да, именно подстроечных.

Разумеется, что микросхемы не имеют шлицов для
регулировки. Эти резисторы юстируются лазером после изготовления кристалла
ОУ до получения оптимального режима работы диф каскада, и как следствие
– минимального уровня THD.

Даже не вникая глубоко в экономику должно быть понятно,
что стоимость ОУ, приведенных в качестве примера будет отличаться в разы,
а если точнее, то почти в 20 раз. Так же изначальные параметры компонентов
объясняют засилье рынка TL071 от STMicroelectronics, ведь продавать эти
популярные ОУ приходится по той же цене, что и ОУ от Texas Instruments
– не каждому покупателю удается объяснить разницу.

Большинство ориентируется
только на название и не вникает в то, что одни и те же микросхемы от разных
производителей отличаются даже точностью применяемых резисторов, не говоря
уже о полупроводниках. На рисунке 3 показана принципиальная схема TL071
от STMicroelectronics, номиналы пассивных компонентов отличаются от номиналов,
показанных на рисунке 1:

Принципиальная схема ОУ TL071 от STMicroelectronics
Рисунок 3. Принципиальная схема ОУ TL071 от STMicroelectronics

Учитывая то, что разброс параметров резисторов считается
от последнего знака и обычно составляет 5% получаем, что разброс резисторов
в диф каскаде для микросхемы от STMicroelectronics составляет 5% от сотен
Ом – последний знак это 0,3 кОм, а для микросхемы от Texas Instruments это будет 5% от единиц Ома, ведь в документации от завода прописан номинал
в 1080 Ом.

Для большей наглядности рассмотрим параметры ОУ,
позиционируемых как аудио:

Наименование
(тип корпуса)

Напряжение
питания, В

Входное
сопротивление,
МОм

Выходной
ток, мА

Частота
единичного
усиления, МГц

Скорость
нарастания
выходного
напряжения

Уровень
THD

ОДИНАРНЫЕ

AD8065
(SIOC, SOT, MSOP)

±5…12

10000

30

145

180

AD8033
(SIOC, SOT, MSOP)

±5…12

10000

60

80

80

AD744
(SIOC, DIP)

±15

30000

25

13

75

AD844
(SIOC, DIP)

±15

10

80

60

2000

AD843
(SIOC, DIP, TO-8)

±15

1000

50

34

250

OPA134
(DIP, TO-8)

±15

10000

40

8

20

0.00008

OPA177
(SIOC, DIP)

±15

45

20

0.6

0.3

для
интеграторов

TL071TI
(SIOC, DIP)

±

10000

60

3

13

0.003

TL071ST
(SIOC, DIP)

±

10000

60

2.5

8

0.01

СДВОЕННЫЕ

AD8019
(SOIC)

±12

10

200

180

400

AD8066
(SIOC, SOT, MSOP)

±5…12

1000

30

145

180

AD8022
(SIOC)

±5…12

0,02

100

50

50

AD828
(SIOC, DIP)

±5…15

0.3

50

130

450

AD8034
(SIOC, SOT, MSOP)

±5…12

1000

60

80

80

AD8397
(SIOC)

±5…12

87

170

63

53

AD826
(SIOC, DIP)

±5…15

0.3

50

50

350

AD827
(SIOC, DIP, E20A)

±5…15

0.3

50

300

AD8599
(SIOC)

±15

52

10

15

AD823
(SIOC, DIP)

±3…15

1000

17

16

25

OPA2134
(DIP, TO-8)

±15

10000

40

8

20

TL072TI
(SIOC, DIP)

±15

10000

60

3

13

0.003

TL072ST
(SIOC, DIP)

±15

10000

60

2.5

8

0.01

SSOP8 длина корпуса 4.4 мм, ширина 3.5
мм, шаг выводов 0.65 мм, длина выводов 1 мм
DMP8 длина корпуса 5 мм, ширина 5 мм, шаг выводов 1.27 мм, длина выводов
менее 1 мм
EMP8 длина корпуса 4 мм, ширина 5 мм, шаг выводов 1.27 мм, длина выводов
1 мм
DIP очень крупный корпус, выводы загнуты вниз (вставляется в “кроватку”
или впаивается в отверстия на плате)
Операционные усилители от Analog Devices имеют следующие габариты
корпуса:
SOIC_N (R8) длина корпуса 4 мм, ширина 5 мм, шаг выводов 1.27 мм,
длина выводов более 1 мм
MSOP (RM8) длина корпуса 3 мм, ширина 3 мм, шаг выводов 0.65 мм, длина
выводов менее 1 мм

Для сравнения в таблицу включены ОУ широкого применения
TL071, причем разных производителей.Однако использование дорогих ОУ для усилителя имеет
смысл лишь при наличии соответствующих акустических систем, прежде всего
и не стоит забывать об источнике звукового сигнала.

Конечно же использование хороших ОУ в усилителе,
работающем в комплекте со средненькими АС и бюджетным источником будет
заметно, но все равно полностью раскрыть все возможности данный ОУ не
получится – тракт полностью должен соответствовать выбранной ценой категорий.

См. также: Операционный усилитель? Это очень просто!

Принцип работы

В основе принципа работы усилителей класса D и любых его модификаций, в том числе имеющих самостоятельные буквенные обозначения (классы T, J, Z, TD и другие), лежит принцип Широтно-Импульсной Модуляции или, сокращенно, ШИМ. Модуляция сигнала как метод существует довольно давно и используется как способ хранения и передачи информации.

Суть ее заключается в том, чтобы модулировать полезным сигналом некую несущую частоту. Частота выбирается таким образом, чтобы ее было удобно передавать или записывать на носитель. Процесс воспроизведения подразумевает обратную последовательность: выделение полезного сигнала из модулированной несущей частоты.

По такому принципу работает и цифровая техника, и радиосвязь, и теле-радиовещание. Тонкость состоит в том, что в случае с ШИМ преследуется совершенно иная цель. Модуляция позволяет привести сигнал в такой вид, чтобы его усиление было максимально простым и эффективным процессом.

В основе схемотехники класса D лежит генератор СВЧ-импульсов (исчисляемых сотнями МГц) несущей частоты и компаратор — устройство, модулирующие эти импульсы, соответственно форме входящего аналогового сигнала. Далее все просто. Модулированный сигнал имеет форму импульсов равной амплитуды, но разной продолжительности, которые усиливаются с помощью пары симметрично включенных быстродействующих транзисторов типа MOSFET.

Упоминание транзисторов, используемых для усиления порождает резонный вопрос: «а не проще было бы сразу усилить аналоговый сигнал без всяких модуляций?». И именно этот вопрос раскрывает суть усилителей класса D. В обычных усилителях классов A, B, G и прочих их производных транзистор работает с широкополосным сигналом, постоянно меняющимся и по амплитуде, и по частоте.

Поведение даже самого лучшего транзистора на разных амплитудах и частотах не 100% одинаково, что неизбежно приводит к искажениям, которые мы знаем как окрашенность или «характер» усилителя. Модулированный сигнал в усилителях класса D меняется дискретно и на полную амплитуду.

Все, что требуется в таком режиме от транзистора — максимально быстро реагировать на изменение уровня сигнала, а поведение его на промежуточных значениях амплитуды не имеет значения. Кроме того, данный режим работы транзистора крайне положительно сказывается на энергоэффективности усилителя, доводя его теоретический КПД до 100%.

Второй наиболее очевидный вопрос касается сходства модулированного аналогового и цифрового сигналов. Обычно это даже не вопрос, а утверждение: «Усилитель класса D — цифровой, а значит правильно подавать на его вход цифровой сигнал, а не аналоговый». Процесс модуляции аналогового сигнала на входе усилителя класса D, действительно, очень напоминает то, что происходит в АЦП при оцифровке звука, однако принцип модуляции принципиально отличается от того, что используется в формате PCM.

Именно по этой причине цифровые входы интегрированных усилителей, работающих в классе D, используют вполне традиционную схему ЦАПа, с аналогового выхода которой сигнал и поступает на вход платы усилителя мощности. Таким образом, аналоговый сигнал является основным и естественным входящим сигналом для усилителей класса D.

Впрочем, существуют и исключения, которые, если разобраться более детально, ничего не меняют в общей картине, а лишь дополняют типовую схемотехнику класса D. Небезызвестный Питер Лингдорф, еще будучи разработчиком в компании NAD, успешно реализовал схему прямого преобразования PCM-потока напрямую в формат ШИМ без традиционной процедуры цифроаналогового преобразования. Эта технология получила название Direct Digital, или говоря по-русски: прямое усиление цифрового сигнала.

Таким образом удалось сократить протяженность и понизить сложность звукового тракта, а единственное цифроаналоговое преобразование в подобной схеме производится непосредственно перед акустическими клеммами. Однако стоит заметить, что для работы такого усилителя с аналоговым сигналом он должен также иметь и классический входной каскад, использующийся в традиционных усилителях класса D.

На текущий момент технология прямого усиления «цифры» еще не стала массовым явлением, вероятно, потому что г-н Лингдорф грамотно оформил патентные права на технологию или просто предпочитает не раскрывать коллегам всех секретов. Но не так давно подобная схема была успешно реализована в портативной технике, что позволяет надеяться на более широкое распространение технологии в будущем. Не исключено, что спустя некоторое время класс D действительно станет цифровым усилителем.

Саб с усилителем на tda1562q

Мой сабвуфер на двух 30ГДН-8.

Ну естественно, оба динамика я достал из советских 50АС-106. Хоть они и идентичны, хоть и достаны из одного комплекта акустической системы, а немного разные. Мои замеры резонансной частоты у каждого динамика дали разницу на 10 Гц.

У одного Fs~40Гц, а у другого Fs~50Гц. На ощупь подвес одного динамика в два раза жестче другого. Но я закрыл глаза на эту проблему.

Всё же очень хотелось собрать сабвуфер на двух динамиках, и в расчётах я опирался только на паспортные данные.

Начал сборку с усилителя. Решил, что TDA1562Q подойдёт.

Это 50 ватт на 4 Ом при 12 В или 70 ватт на 4 Ом при 14 В.

В питании я вставил дроссель от сломанной магнитолы, а также её диод от ошибочного подключения питания и вставку на 10А. Питание TDA1562Q не отключается, только MUTE. Светодиод (8-ая ножка) на перегрузке что-то иногда мигает на полной громкости, но со звуком ничего страшного не происходит. В общем, серьёзная микросхема TDA1562Q, но дорогая!

Я не использовал ни фильтров, ни среза, потому что в современных магнитолах уже есть выход на саб со сдвигами и ФНЧ. Радиатор более 200 см2. Нагревается не сильно, рука терпит. TDA1562 работает без напряга. На выходе 20 вольт снимается.

Сборка самого ящика у меня не составила особого труда. Программа Speackershop дала ящик в 55 литров и настройкой фазоинвертора на 30 Гц. Я взял три трубы D=4,5 см и L=25 см. Три для уменьшения «хлюпанья» воздуха, ведь всё таки динамика два.

Отделка карпетом. И родные решетки от 50АС-160.

Испытания проводил в ВАЗ-2109. Фотографий нет. Звучит и конечно же трясёт. Владелец машины сначала удивился, что мощность всего 70 ватт. А по истечении 2-х часов прослушивания повернулось зеркало заднего вида, и постоянно открывался бардачок. В общем, даже среди гремящих отголосков деталей кузова эффект приятный. Конечно же звук басов за пределы салона не выходит.

Соединение с нагрузкой

Усилитель сам по себе звуковые волны излучать не может, для этого используются динамические головки или наушники. О самих динамиках речь пойдет позже, пока же поговорим о том, что соединяет их с усилителем – о проводах.

Хотя, я немного поторопился, кроме проводов существует еще несколько вещей, которые могут испортить звучание – пайка и разъемное соединение.

Пайка – соединение медных проводников с помощью мягкого припоя. С одной стороны, это самый надежный способ соединения проводников, с другой – переход медь-припой обладает некоторым эффектом полупроводника, сопротивление соединения может немного (совсем чуть-чуть) меняться от направления и силы тока, частоты сигнала.

Разъем, как средство соединения, хуже пайки. Но в ряде случаев без него не обойтись, особенно при соединении автономных конструкций или необходимости переключения цепей. Собственно, какие-либо «особые» рекомендации дать трудно, качество соединения зависит не только от формы и покрытия контактирующих поверхностей, испортить хорошую вещь можно чем угодно. Одно точно известно – силовые разъемы это зло.

Провода… и это самое интересное, остановимся подробнее.

Медные провода тоже обладают эффектом полупроводника и вносят искажения в передаваемый сигнал. С данным дефектом можно бороться схемотехнически (большим выходным сопротивлением усилителя), но лучше использовать специальные сорта меди с низким содержанием примесей, приводящих к «полупроводниковому» эффекту, например, так называемую «бескислородную» медь.

Кроме внесения искажений, провода обладают конечным сопротивлением. Например, у одиночного провода сечением 1.5 мм2 и длиной 3 метра сопротивление порядка 0.08 Ом. Полученная цифра не впечатляет, при подключении колонки 4 Ом таким проводом, на нем потеряется всего два процента напряжения (четыре процента мощности).

Впрочем… есть еще один подводный камень, про который все почему-то забывают. При повышении частоты сигнала, передаваемого по проводу, начинает действовать волновая природа и возникает эффект вытеснения зоны проводимости в поверхностные слои проводника.

Если провод не монолитный и состоит из множества тонких проволочек, то этот дефект не проявляется? Отнюдь! Если проводники электрически не изолированы друг от друга, то магнитные поля складываются, и электрический ток начинает течь по внешним слоям только тех проволочек, что находятся снаружи.

Понятное дело, что основная вредоносность этого эффекта проявляется в импульсных блоках питания и других узлах с высокочастотной коммутацией. Также его проявления есть и в обычной связи «усилитель-колонка» – если на постоянном токе и не высокочастотном сигнале сопротивление провода останется 0.

К чему это я? Всё просто – качественная бескислородная медь зачастую выполняется в виде жгута изолированных мелких проволочек. Не знаю, насколько повышает качество звучания отсутствие кислорода в меди, но вот устранение дефектов от влияния эффекта «скин-слоя» прослеживается весьма четко и может быть легко измерено.

В заключение этого раздела хотел бы специально обратить внимание – качество пайки и соединительных проводников важно только при протекании большого тока через них. Для сигнальных цепей применение особо качественных проводников или пайка припоем с высоким содержанием серебра не дадут никакого положительного эффекта.

Что до разъемов, то с ними всё сложнее. Любое коммутационное устройство (разъем, реле и прочее) проектируется как на максимальный ток, что очевидно, так и на минимальный. Последнее требование вызвано применяемым покрытием контактной группы. Если на какое-то соединительное устройство не указан минимальный ток, то это вовсе не означает, что его нет – просто производитель «забыл» указать сей параметр.

Усилитель для сабвуфера на tda7294 (мостовая схема)

Вступление

Усилитель для сабвуфера делал не из-за отсутствия или экономии денег, а интереса ради. Параллельно со мной делал то же самое мой сын (уже сделал 2 штуки).

Я не меломан и не аудиофил, но музыку люблю, часто слушаю. Слухом не обделен, в тоже время, я не понимаю людей, которые начинают читать сотые доли нелинейных искажений, говорить о направленности проводов и слышимости верхних частот чуть ли ни ультразвукового диапазона.

Все это фигня и называется словом – “болезнь”. Не все люди наделены идеальным слухом, поэтому у каждого свой потолок. Главное в музыке, что бы она доставляла удовольствие. Если Вам нравится звучание вашей магнитолы, акустики, усилителя, то вот Вам и счастье.

Теперь осталось только сделать усилитель и блок питания к нему (преобразователь напряжения).

Усилитель для сабвуфера на TDA7294 (мостовая схема)

Почему TDA7294? Очень дешево для начинающих, хорошие параметры. Усилитель очень прост в изготовлении. Печатных плат полно в Интернете. Я делал свою печатку под свой корпус. Незацикливайтесь на поисках идеальной платы. Берите ту, которая устраивает Вас по конструкции и размерам.

Работать будут практически любые платы, в которых не допущены ошибки. Желательно, что бы земля сходились в одной точке, но если это не так, то не факт, что схема не будет работать или возбуждаться. На моей плате 1 и 4 выводы микросхемы подходят к земле не по отдельности, а соединены последовательно.

Все работает без проблем. Если вы впервые собираете такие схемы, то лучше всего собрать типовую схему включения. Все схемы типа Сырицо и другие самоделки могут не пойти, так как они подгонялись авторами под себя и под свои детали. Типовая схема включения не критична к применяемым деталям и при правильном монтаже начинает работать сразу.

Конденсаторы по питанию не обязательно большой емкости. 2200 мкФ за уши. Большим минусом схемы является тепловыделение, поэтому радиатор побольше. Я применил то, что было под рукой (оказался маловат), сильно греется, пришлось ставить три вентилятора 50х50 мм (теперь радиатор слегка теплый).

Если есть возможность, лучше ставить большой радиатор, не надеясь на вентиляторы, так как вентиляторы могут отказать. Они в компьютерах то недолго работают, а в багажнике и подавно загнутся раньше времени. Еще одна прописная истина – микросхемы на радиатор только через изоляционные прокладки и желательно термопаста.

Моя печатная плата рабочая на все 100%. Делалась утюжной технологией. Если кто будет ее повторять, то пропаяйте дорожки питания и выход на динамик.

Пару слов про кроссовер. Схема из сайта Шихатова. Схема объяснений не требует. У меня не пошла микросхема 544УД2 и ее зарубежный аналог (поменял несколько микросхем). Возбуждалась на частоте около 1 МГц. Поменял ее на УД6 и все стало нормально. Переменники используйте хорошие иначе не миновать треска в динамике.

Конструкция корпуса у каждого своя, я делал по старой проверенной технологии из фольгинированного текстолита. Стоит он недорого, хорошо обрабатывается, корпус получается крепкий и красивый.

Покрашен антигравием. Разъем под питание и динамик самодельный, использовал часть мощного реле. Усилитель представляет собой законченную конструкцию.

При 35 вольтах выдает 180 Вт неискаженного сигнала (по осциллографу).

PS: Для меня усилитель обошелся дешево, но если у вас нет запаса деталей и Вам придется все покупать, то это будет представлять определенную сумму денег. Вначале посчитайте затраты, а потом беритесь за работу. В любом случаи данный усилитель идеально подходит для начального уровня.

  • TDA 7294 datasheet
  • Печатная плата в формате [.pcb] (не проверено на соответствие)
  • Печатная плата [.lay]

Усилитель на tda1562q микросхеме 70вт

08.12.2021 | Своими руками, Электро | 1 | Кирилл

В детстве собирал интересный усилитель на TDA1562Q, интересен он минимальным набором деталей, простотой и хорошей работой, а так же высокой выходной мощностью. Заявленная производителем мощность в 70Вт не RMS, т.

е эта мощность не может выдаваться постоянно, лишь в пиковые моменты.

Это связано что напряжение на микросхеме подкачивается за счет конденсаторов большой емкости, благодаря чему усилитель TDA1562Q, способен поднять мощность вsit чем аналогичные усилители без конденсаторной подкачки.

Усилитель на TDA1562Q был собран специально для самодельного сабвуфера, сердцем которого служила 10″ (дюймовая) низкочастотная головка Sony Xplod, несмотря на заявленную производителем завышенную мощность динамика, микросхем TDA1562Q раскачивала ее ОЧЕНЬ хорошо, на столько что в комнатке 10 м², басом качало и в грудак и шкафы.

Сабвуфер умер в пожаре, а усилитель остался, раздербаненый в поисках нужных деталей. А сейчас, я решил вернуть его к жизни и повторить удачный опыт сборки Бассзиллы.

Вернемся к восстановлению усилителя на TDA1562Q:

Схема включения и печатная плата позаимствована из набора NM2034 для сборки усилителя НЧ 70Вт, моно (TDA1562Q, авто)

Мне не хотелось придумывать велосипед.

— Нестеров Кирилл

Номиналы электронных компонентов приведены в таблице:

ПозицияНаименованиеПримечаниеКол.
C10,47мкФ/63ВТип К73-171
С2, СЗОДмкФ или 0,22мкФТип К73-44 (пленочный) (код 104 или 224)2
С410мкФ/25…50В1
С5, С64700мкФ/25В0 172
С7ОДмкФ(104)1
С82200мкФ/25В1
DA1TDA15621
HL1Светодиод, красный. 03 мм1
HL2Светодиод, зеленый, 03 мм1
R11 ОкОмПодстроечный резистор1
R2, R41 ОкОмКоричневый, черный, оранжевый2
R31 ООкОм или 91 кОмКоричневый, черный, желтый или белый, коричневый, оранжевый1
R51кОмКоричневый, черный, красный1
R 6820 ОмСерый, красный, коричневый1
VD1Zeiiner 2V7Стабилитрон на 2,7 В 1/2W1
VT1ВС558Возможная замена ВС5571
VT2ВС547Возможная замена ВС5481
PLS-402 контакта3 контакта 2
2
Съемная перемычка (джампер)1
А2034Печатная плата 67×371


В интернете много печатных плат усилителей на TDA1562Q, но эта мне понравилась наличием LED индикации перегрузки и удобным расположением деталей. Усилитель хорош для начинающего, прост в сборке и не требует настройки, кроме переменного резистора.

Выводы

Все основные преимущества класса D вполне подтверждаются практикой. Но если с точки зрения энергопотребления и других измеряемых характеристик ситуация абсолютно очевидная и бесспорная, звучание по-прежнему остается вопросом дискуссионным. Класс D в чистом виде дает максимально качественный и, как следствие, — нейтральный, не окрашенный звук.

Такое придется по вкусу далеко не всем и с наименьшей степенью вероятности порадует тех, чьи предпочтения формировались через прослушивание ламповой и прочей ретро-техники. С этой точки зрения разработчики Marantz продемонстрировали житейскую мудрость, придав своему усилителю фирменный характер звучания путем установки оригинальных модулей предварительного усиления.

В целом же, вывод такой: если производитель не экономил на ключевых элементах схемы, в результате мы получаем усилитель максимально близкий к совершенству. Остальное — дело вкуса.

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

Слушаем музыку с компьютера правильно. Три основных способа

Что за музыка была «зашита» в популярных ОС

Что такое Roon? [видео]

Оцените статью
Huawei Devices
Добавить комментарий